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LETTER TO THE EDITOR 

A test of conformal invariance: correlation functions on a disc 
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$ DCpartement de Physique ThCorique, UniversitC de Gentve, 1211 Gentve 4, Switzerland 

Received 27 June 1985 

Abstract. Using conformal invariance one can derive the correlation functions on a disc 
from those in the half-plane. The correlation function in the half-plane is determined by 
the 'small' conformal invariance up to an unknown function of one variable. By measuring, 
using the Monte Carlo method, the correlation function for two different configurations, 
the unknown function can be eliminated and one obtains a test of conformal invariance. 
It is shown that the Ising and the three-state Potts model pass the test for very small lattices. 

It was shown by Cardy (1984) that at the critical temperature, the two-point correlation 
function in the half-plane x,  y ( y  2 0 )  is determined by conformal invariance to have 
the expression: 

GHP(Y1, Yz,  XI  - x2) = ( Y l Y 2 ) - x @ ( f )  (1) 

f =  [ ( X I  - x 2 ) 2 +  ( Y l  -Y2)21/2Y,Yz (2) 

lim @(f) -f" lim @(f) - f " s .  (3) 

where 

and 

f - 0  f + m  

Here x ( x , )  are the bulk (surface) scaling dimensions (Binder 1983). With the exception 
of the Ising model, the functions @ are yet unknown. In the Ising case, for the spin-spin 
correlation one has (McCoy and Wu 1967) 

@ = [(f+2)'/'-f"2]'/2[f(f+2)]-1/8. (4) 
Using an analytic transformation (Belavin et a1 1984) and equation (1) one can 

derive the correlation function for other geometries. This was done for the strip (Cardy 
1984b); here we will consider the disc. When considering the strip one has the advantage 
that the correlation functions parallel to the strip are exponential and the exponent 
gives directly the scaling dimension x,  (only the limit f + m  of @(f) appears). The 
disadvantage is that one has to do the calculations using the transfer matrix and is 
thus limited to systems with few degrees of freedom. As we will see, in the disc 
geometry the full function @(f) appears but one has the advantage of a finite geometry 
and hence the possibility of using the Monte Carlo method (Metropolis et a1 1953) 
and study systems with many degrees of freedom. 

We write 

zj = xj + iyj zj = pj e'vJ j=l,2 (5) 
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and perform the transformation 

W(z) = U + i  V =  R(iz + l ) / ( iz  - 1). ( 6 )  

The transformation (6) takes the half-plane into a disc of radius R with free boundary 
conditions. Choosing rp, = rp, =ZT the two points (0, yl),  (0, yz)  are mapped into two 
points ul, uz along a diameter of the disc: 

1 

(7) 

The correlation function between the two points u1 and u2 is 

Gdu1, u2) = I WYZA W'(zz)l-XGHP(YI, Y 2 )  

= (2 /R)2"[ (  1 - U?)( 1 - U : ) ] - " @ ( f )  ( 8 )  

a 

Figure 1. The spin-spin correlation functions of the king model on a disc of radius R = 10. 
(a )  The function G,(r) (full curve) is obtained from equations (4) and (12). The error 
bars of the Monte Carlo data are statistical. ( b )  The function G , ( a )  (full curve) is obtained 
from equations (4) and (10). 
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where 

f = 2( U1 - u2)2/ (U: - 1 )(U: - 1). (9) 

If the function @(f) is known, the correlation function GD(ul, u2) on the disc is 
completely determined. This is the case for the Ising model. Since however in general 
@(f) is unknown, we can still use (8) to give a check of conformal invariance. Let us 
choose two configurations and use (8): 

(a) u1 = -u2 = a, ( O S  a s 1) 

Gl(a )=  GD(-a, a)=(2/R)2"(1-a2)-2"@(f) (10) 

f =  8 a 2 / (  1 - a2)2. (11) 

with 

Figure 2. The spin-spin correlation functions of the king model on a disc of radius R = 50. 
(a) The function G,(r) (full curve) is obtained from equations (4) and (12). The error of 
the Monte Carlo data are statistical. ( b )  The function G , ( a )  (full curve) is obtained from 
equations (4) and (10). 
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(b) ul=O, u2=r, ( O s r s l )  

G2( r) = GD(O, r) = (2/ R)2"( 1 - r2)-"@(f) 

with 

f=2r2/(1-r2) .  (13)  

r = 2a/(1 + a 2 )  (14) 

G2( r)/  GI( a )  = ( 1  + a')'%. (15) 

We now take 

such that the values of f  in ( 1  1 )  and (12) are the same and obtain 

We stress that the identity (15 )  is a consequence of conformal invariance alone 
and should apply also to systems where not all the representations of the conformal 
algebra are unitary (Belavin et al 1984, Friedan et al 1984). An example of such 
systems could be the Ashkin-Teller model. 

We have tested the relation (15) for the Ising and the three-state Potts (1952) model. 
We have taken square lattices with R = 10,15,20,25,30,35,40,45 and 50 lattice spaces. 

A disc lattice is constructed by the following procedure: draw a circle of radius R 
around the central point of a (2R + 1)  x (2R + 1 )  square lattice and then drop all the 
points outside the circle, using free boundary conditions. The function G,(a)  is 
measured for two points being equally spaced ( a )  from the central point in opposite 
directions. Then from one of these points and the central point we get two values for 
G2(r). For each radius we have performed at least 1600 sweeps for measurement and 
an appropriate number of sweeps for termination. The error bars shown in figures 1, 
2 and 3 are derived from the statistical fluctuations. 

We first consider the spin-spin correlation in the Ising model. Here the functions 
G2(r) and G,(a) are known since @(f) is known (see equation (4)). In figures 1 and 
2 we show the measured values of G( r) and G( a )  and compare them with the theoretical 

r 

Figure 3. The spin-spin correlation functions of the three-state Potts model on a disc of 
radius R = 10. ( x )  represent the Monte Carlo values for G2(r ) ,  (0) represent the Monte 
Carlo values for the function G, (a ) ( l+  The errors are statistical. 
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values obtained from (10) and (12). We have normalised the theoretical curves at the 
Monte Carlo value for r = 1/R. We have represented the correlation functions for 
R = 10 (figure 1)  and R = 50 (figure 2). We notice that for the small lattice (R = 10) 
the fluctuations are small and the agreement with the theoretical curves is excellent. 
The same is true for R = 15, 20 and 25. Beginning with R = 30, the fluctuations start 
to be large (the relaxation time increases too) and the agreement with the theoretical 
predictions is less spectacular. 

We now consider the three-state Potts model. We have considered again the 
spin-spin correlation function ( x  = &) and use the test of conformal invariance given 
by equation (15). The functions G2( r) and GI( a ) (  1 + u2)4'15 are compared in figure 3 
for R = 10. The average values of the correlation functions are close and we conclude, 
as expected, that at the critical point the system is conformal invariant. 

In conclusion, when used on small lattices equation (15) provides us with a good 
check of conformal invariance and obviously one should test, using our method, other 
systems too. 

We would like to thank A Malaspinas and M Droz for useful discussions. Two of us 
(VR and HR) would also like to thank the Swiss National Science Foundation for 
financial support. 
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